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We study the effect of mergers in the force chain model describing the stress profile in static granular
materials. Combining numerical and analytical calculations, we show that granular materials do not generally
behave in an elasticlike manner; however, they may under specific conditions, which are elaborated. Nonelastic
behavior resulting from the nonlinearity of the full force chain model is discussed.
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A striking characteristic of stress transmission in granular
matter is the network of highly singular lines, termedforce
chains, along which stress propagates[1–4]. This force chain
network reflects the specific packing of the system, which is
unique for each experiment. Although this leads to signifi-
cant fluctuations in stress profiles from experiment to experi-
ment, the average stress profiles calculated over an ensemble
of similar experiments seem well defined[3]. In particular,
the ensemble average of the response to a small localized
force, theresponse function[5], is a bell-shaped curve with
scaling properties similar to that of an elastic response func-
tion [2,3,6,7]. It is natural, therefore, to ask whether the av-
erage stress in granular materials behaves according to elas-
ticity theory. In this article we address this question within
the context of the force chain model[8] (see[9] for a dis-
cussion of a model of masses linked with linear and nonlin-
ear springs). We find significant deviations from elasticity,
except for the case of an isotropic packing with nearly iso-
tropic applied forces.

The recently proposed force chain model(FCM) [8] trans-
forms the singular behavior of stress in states of a granular
material into a continuum theory by averaging over an en-
semble of states. This is done by writing a master equation
for the average density of force chains, allowing force chains
to propagate, split, and merge[8,10]. Previously, the re-
sponse function of the FCM was calculated in three different
fashions: simulating force chain propagation in small
quenched disordered media[8]; calculating the constitutive
relation for granular materials on large scales using a
splitting-only variant of the force chain model[8]; and lin-
earizing a specific discretized version of the model around a
homogeneous solution[10]. The response functions calcu-
lated by the first two methods agreed qualitatively with the
experimentally measured response[2,3], exhibiting a bell-
shaped peak, while the third method gave a transition from a
single to a double peak at an intermediate length scale[10].

A priori, there are reasons to expect granular materials to
behave nonelastically: They cannot sustain tensile stresses,

they rearrange when external loads are changed, and they
have no equilibrium stress-free state with respect to which to
define a displacement field(see[9] for a different view on
these issues). Despite these considerations, the central result
of Ref. [8] was that, in the absence of force chain mergers,
granular materials behave in a quasielastic manner on large
length scales. In this article, we argue that the effect of force
chain mergers is to change this: Generally, granular materials
do not behave elastically. The apparent elasticlike behavior
found in experiments[2,3] is restricted to specific packing
geometries(i.e., isotropic) and to specific configurations of
applied loads(i.e., near isotropic).

Stress profiles in the FCM may be calculated in three
ways, each adapted to a different length scale: Monte Carlo
simulation on small scales; numerical solution of the dis-
cretized model of Ref.[10] on intermediate scales; and cal-
culation of the constitutive relation of the full FCM on large
scales. We will discuss the latter two methods; the simulation
results will be presented in[11]. We will show that observed
deviations from elasticity[3] may be understood in the con-
text of the FCM.

In the framework of the FCM, a force chain is character-
ized by its intensityf (the pressure exerted on each grain
along the force chain), its directionn̂ (which is determined
with respect to the applied force on the boundary), and its
positionrW. There are four events that involve the creation or
annihilation of a force chainhf ,n̂j at rW [10]: it can split;
another force chain can split, creating it as one of its off-
spring; it can merge with another and so be annihilated; or
two other force chains can merge, creating it. This yields a
master equation for the force chain densityP; Psf ,n̂,rWd
[8,10]:

n̂ ·¹W P = −
1

l
P +

2

l
E P1c0d„f1n̂1 − sfn̂ + f2n̂2d…df1Idf2I

− QPE P1w0d„f2n̂2 − sf1n̂1 + fn̂d…df1Idf2I

+
Q

2
E P1P2w0d„fn̂ − sf1n̂1 + f2n̂2d…df1Idf2I . s1d

HerePi =Psf i ,n̂i ,rWd, Q is the force chain width[12], l is the
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splitting mean free path of a force chain, and the functionsc0
and w0 are the weights of a splitting/merging event(which
depend, in principle, on the directionsn̂,n̂1, and n̂2). dfjI
;dfjdn̂j, and thed functions ensure force balance. Through-
out this article we will assume that when two force chains
meet, they merge, i.e.,w0=1.

Following [8], we define the force chain intensity density
Fsn̂,rWd=ePsf ,n̂,rWdf df and its angular moments

JasrWd = aE naFsn̂,rWddn̂, s2d

sabsrWd = aDE nanbFsn̂,rWddn̂; s3d

a is the grain size, andD the dimension of the system.sab is

the local stress tensor[13] andJWsrWd can be thought of as the
average force chain current.

In order to gain insight into the mesoscopic scale of stress
profiles in a granular material, we approximate Eq.(1), fol-
lowing Ref. [10]. We employ the discrete ordinate method
proposed by Chandrasekhar[14] for solving the radiative
transfer equation. This approximates the integrals in Eq.(1)
by sums, by discretizing the directions of force chains as
Psf ,n̂,rWd=oi=1

6 Pidsf − f*ddsn̂− n̂id where n̂i =scosui ,sin uid,
i =1, . . . ,6, andui+1−ui =p /3 (with u7;u1). ThePi’s are six
different functions representing the weights of the force
chains propagating in directionsn̂i. Note that the choice
ui+1−ui =p /3 implies that all forces have the same intensity
f* , in order to satisfy force balance. Substituting this into Eq.
(1) results in six coupled differential equations for the six
force chain densitiesPi. RescalingPi → s1/lQdPi and rW
→ rW /l we arrive at the dimensionless equations[10]

n̂i ·¹W Pi = − Pi + Pi+1 + Pi−1 + Pi+1Pi−1 − Pi+2Pi − Pi−2Pi .

s4d

Note that these equations are written for isotropic homoge-
neous assemblies, since the mean free path is assumed con-
stant.

In Ref. [10] homogeneous solutions of the formhPjj
=hq,q2,q,q−1,q−2,q−1j for anyq were considered; however,
there are others, for example,hPjj=hq−1,1 ,q,q,1 ,q−1j. In
[10], Eq. (4) was solved by linearization around the first
homogeneous solution, and, remarkably, a double peaked re-
sponse was shown to emerge at intermediate depths. It is
important to understand what physical conditions these solu-
tions correspond to. Let us begin by choosingq=1 in either
of the homogeneous solutions; this means that the force
chain density, and therefore the stress, is uniform throughout.
This represents the case of an isotropic array stressed hydro-
statically, which is the reference frame for response function
experiments. In the case thatqÞ1 we have some predeter-
mined relation between force chain densities in different di-
rections at the same position which is unphysical for an iso-
tropic material.

Numerical solutions of the descretized model Eq.(4) were
obtained using a second order accurate finite-difference ap-
proximation and solving the resulting nonlinear algebraic

system of equations iteratively[11]. In Fig. 1, the response to
a normal force as calculated by this model is plotted[15].
The peak is symmetric, as expected. In contrast, the response
to a tilted force(Fig. 2 shows the pressure profile on a plane
normal to the applied force) is asymmetric. The width at half
maximum of both functions increases linearly, in accord with
the experiments of Ref.[3]. The bell-shaped peak of the
response to the normal force is in agreement with the elas-
ticlike behavior ascribed to granular materials(see, e.g.,
[8,16,17]). However, the asymmetric response to the tilted
force deviates from the elasticity prediction[18].

An explanation for the deviation from elasticity of the
response function to a tilted force can be found in Eq.(1)
which connects the force chain density in one direction with
that in any other direction. This means that if all force chains
arriving at the surface are canceled(the grains rearrange to
have zero stress at a free surface, for instance) the total force
chain density will be zero in the vicinity of that surface. For
an elastic material, however, it is possible to have no strain in
the direction perpendicular to the surface and a finite strain
parallel to the surface, since the strain components are inde-
pendent. It is noteworthy that this deviation from elasticity is
observed also in the splitting-only version of the force chain
model (see[19]).

One of the fundamental characteristics of the full force
chain model is its nonlinear nature[see Eqs.(1) and(4)]. In
order to estimate the effect of this nonlinearity we tested

FIG. 1. The response function as calculated with boundary con-
ditions Pi =0. The width of the response scales linearly with depth
as seen in the inset, where the response function at various depths is
plotted; the curves are normalized by peak height. See[15].

FIG. 2. The response of a granular assembly to a force tilted 60°
with respect to the free surface. Inset: Stress normalized by peak
height, showing linear scaling with depth. See[15].
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superposition by comparing the response to two different
perturbations, first applied simultaneously and then applied
separately. Figure 3(a) presents the response to two forces
applied close to one another, and Fig. 3(b) two forces applied
further apart. It is clear that while the effect of force chain
interaction is significant in the former case, it is negligible in
the latter.

While these results are suggestive, the discretized model
gives incomplete understanding because all forces in the sys-
tem are equal. Thus, to better our understanding of the effect
of force chain mergers we calculated the constitutive relation
on the macroscopic scale by calculating angular moments of
Eq. (1), in the spirit of Ref.[8]. Multiplying Eq. (1) by fn̂
and integrating overfn̂ we arrive at the force balance equa-
tion

¹W · s = FW 0

whereFW 0 is an external body force. In order to calculate the
second moment of Eq.(1), one has to compute the integral

I ;E P1P2fn̂an̂bw0d„fn̂ − sf1n̂1 + f2n̂2d…dfIdf1Idf2I .

It has been shown both in experiments[20–22] and in simu-
lations [23] that the probability distribution of forces,Psfd,
has a maximum, and decays exponentially for larger forces.
Thus, we approximate the above integral by considering
small deviations off1 and f2 from the intensityfmax at which
the Psfd is maximal. That is, we write

f1 = fmax+ df1,

f2 = fmax+ df2 s5d

and neglect terms with high orders ofdf i in I. Moreover, we
assume near isotropy, by expandingFsn̂,rWd in spherical har-
monics and keeping only the terms

aFsn̂,rWd . p + Dn̂ ·JW +
D + 2

2
n̂ · s̃ · n̂ s6d

where s̃ is the traceless part of the stress tensor andp
=s1/DdTrhsj is the pressure. This gives a constitutive rela-
tion [11]

sab = AfBsfd¹W ·JWdab + Jabg − Ckn̂l ·JWsrWddab − Dfkn̂laJsrWdb

+ kn̂lbJsrWdag s7d

where knl;en̂Psf ,n̂,rWddfI, Jab; 1/2s]aJb+]bJad, and
whose constantsA,C,D are determined by the specifics of
the granular packing. The functionBsfd depends as well on
the force chain densityfsrWd;ePsf ,n̂,rWddfI [11].

For nearly homogeneous and isotropic systems, the terms

that are products ofJW andkn̂l are smaller than terms linear in

JW. If they may be ignored, the constitutive relation reduces to

sab = AfBsfd¹W ·JWdab + Jabg. s8d

This equation is formally equivalent to the constitutive rela-
tion of conventional elasticity[18]. Therefore, we can define
two pseudoelastic moduli: the pseudo–Poisson ration
=B/ s1+2Bd and the pseudo–Young modulusE=As1+nd.
These depend not only on the geometry of the pile, but also
on position through the force chain densityfsrWd. Therefore,
the pseudoelastic behavior obtains only for nearly homog-
enous systems.

Generally speaking, the constitutive relations calculated
by the force chain model[Eq. (7)] are different from those of
conventional elasticity; in particular, they are nonlinear. This
nonlinearity is somewhat subtle, and holds for the ensemble
averaged stresses. For a given packing, which does not
change upon application of external forces, it is clear that
superposition must hold, since the grain-scale equations of
force balance are linear. Consider, however, the ensemble
of stress states which are consistent with a given set of
external forceshF1j. We believe that this ensemble is statis-
tically different from that ensemble which is compatible
with a different set of external forceshF2j, even if hF1j
and hF2j are very similar. Physically, this is reflected in the
fragility [24] of the material: rearrangements occur when
the external conditions are changed. Thus, the FCM pre-
dicts that if an ensemble averaged stress field is measured,
then granular materials will exhibit nonlinearity in its
response.

In this article we have dealt mainly with the ensemble
average of the stress profile in granular materials. However,
the singularity of the force chains and the wide distribution
of force chain intensity measured[1] suggest that it might be
interesting to study force fluctuations, and the effect of fric-
tion, in the framework of the FCM. As in Refs.[8,10], the
existence of force chains, in the sense of a reasonably
straight line of grains in contact, was assumed. It remains to
be seen under what conditions this assumption is reasonable.
We expect that for very hard grains(more precisely, small
stresses compared to the grain compressibility), force chains
will exist. If this is the case, the effect of friction would be to
change the details of the packing obtained, such as the scat-
tering mean free path and persistence length, but not under

FIG. 3. A comparison between the response to two forces ap-
plied simultaneously(dashed line) and applied separately(solid
line). (a) The forces are applied close to each other;(b) the forces
are applied at a distance. Lack of superposition obtains for(a) but
not for (b). See[15].
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mine the existence of force chains(indeed, grains are fric-
tional in all real experiments[2–4]). Furthermore, friction
might stabilize a force chain network, by allowing it to bear
loads which would otherwise be “incompatible;” this in turn
can lead to a larger load regime for which the granular ma-
terial responds linearly.
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